Restriction to gene flow is associated with changes in the molecular basis of pyrethroid resistance in the malaria vector Anopheles funestus.
نویسندگان
چکیده
Resistance to pyrethroids, the sole insecticide class recommended for treating bed nets, threatens the control of major malaria vectors, including Anopheles funestus Effective management of resistance requires an understanding of the dynamics and mechanisms driving resistance. Here, using genome-wide transcription and genetic diversity analyses, we show that a shift in the molecular basis of pyrethroid resistance in southern African populations of this species is associated with a restricted gene flow. Across the most highly endemic and densely populated regions in Malawi, An. funestus is resistant to pyrethroids, carbamates, and organochlorides. Genome-wide microarray-based transcription analysis identified overexpression of cytochrome P450 genes as the main mechanism driving this resistance. The most up-regulated genes include cytochrome P450s (CYP) CYP6P9a, CYP6P9b and CYP6M7. However, a significant shift in the overexpression profile of these genes was detected across a south/north transect, with CYP6P9a and CYP6P9b more highly overexpressed in the southern resistance front and CYP6M7 predominant in the northern front. A genome-wide genetic structure analysis of southern African populations of An. funestus from Zambia, Malawi, and Mozambique revealed a restriction of gene flow between populations, in line with the geographical variation observed in the transcriptomic analysis. Genetic polymorphism analysis of the three key resistance genes, CYP6P9a, CYP6P9b, and CYP6M7, support barriers to gene flow that are shaping the underlying molecular basis of pyrethroid resistance across southern Africa. This barrier to gene flow is likely to impact the design and implementation of resistance management strategies in the region.
منابع مشابه
Monitoring Pyrethroid Insecticide Resistance in Major Malaria Vector Anopheles culicifacies: Comparison of Molecular Tools and Conventional Susceptibility Test
<Anopheles culicifacies is a main malaria vector in southeastern part of Iran, bordring Afghanistan and Pakistan. So far, resistance to DDT, dieldrin, malathion and partial tolerance to pyrethroids has been reported in An. stephensi, but nothing confirmed on resistance status of An. culicifacies in Iran. Methods: In current study, along with WHO routine susceptibility test with DDT (4%), di...
متن کاملPyrethroid Resistance in the Major Malaria Vector Anopheles funestus is Exacerbated by Overexpression and Overactivity of the P450 CYP6AA1 Across Africa
Resistance to pyrethroids (the ingredients in bed net insecticides) in the major malaria vector Anopheles funestus is threatening recent gains in the fight against malaria. Here, we established the role of an over-expressed P450, A. funestus CYP6AA1 in insecticides resistance. Transcription profiling of CYP6AA1 across Africa using microarray and quantitative reverse transcription polymerase cha...
متن کاملOver expression of a cytochrome P450 (CYP6P9) in a major African malaria vector, Anopheles Funestus, resistant to pyrethroids.
Anopheles funestus Giles is one of the major African malaria vectors. It has previously been implicated in a major outbreak of malaria in KwaZulu/Natal, South Africa, during the period 1996 to 2000. The re-emergence of this vector was associated with monooxygenase-based resistance to pyrethroid insecticides. We have identified a gene from the monooxygenase CYP6 family, CYP6P9, which is over exp...
متن کاملGenetics of resistance to permethrin in Anopheles stephensi.
Pyrethroid resistance has been viewed as a very serious threat to the future of malaria vector control1. However, recently two contrasting outcomes have been reported where resistance has been reported in Anopheles malaria vectors. In West Africa a high frequency of the kdr gene in Anopheles gambiae has not prevented good results with pyrethroid treated bednets in laboratory simulations2, in ex...
متن کاملAdjusting for youth: updated cancer risk guidelines.
Background: Pyrethroid resistance in Anopheles funestus populations has led to an increase in malaria transmission in southern Africa. Resistance has been attributed to elevated activities of cytochrome P450s but the molecular basis underlying this metabolic resistance is unknown. Microsatellite and SNP markers were used to construct a linkage map and to detect a quantitative trait locus (QTL) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 2 شماره
صفحات -
تاریخ انتشار 2017